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Abstract. Based on the minimal Gröbner basis G of a monomial ideal I in
the commutative polynomial ring K[x1, x2, . . . , xn] over a field K and a to-
tal monomial ordering �, we define another monomial ordering �G such that
pairwise involutive partition of variables {x1, . . . , xn} for monomials in I gen-
erated by �G yields more compact involutive basis than that generated by �.
In particular, for �alex, the antigraded lexicographic ordering, the involutive
basis for �alexG and n � 1 is much more compact then involutive basis for
�alex. We illustrate this by computer experiments.

The notion of involutive monomial division introduced in our paper [1] is a
cornerstone of theory of involutive bases and their algorithmic construction. The
basic idea behind this notion goes back to Janet [2] and consists in a proper par-
tition of variables for every element in a finite monomial set into the two subsets
called multiplicative and nonmultiplicative. Given a polynomial set and an admis-
sible monomial order, the partition of variables is defined in terms of the leading
monomial set. Each such partition generates a monomial division [3] called invo-
lutive, if it is defined for an arbitrary monomial set and satisfies the axioms given
in Definition 1 [1]. For more definitions and proofs see [3] and book [4]).

Definition 1. [9] An involutive division L is defined on M if for any nonempty
set U ⊂ M and for any u ∈ U a subset ML(u, U) ⊆ X is defined that generates
submonoid L(u, U) ⊂M of power products in ML(u, U) and the following holds

1. v ∈ U ∧ uL(u, U) ∩ vL(v, U) 6= ∅ =⇒ u ∈ vL(v, U) ∨ v ∈ uL(u, U) ,
2. v ∈ U ∧ v ∈ uL(u, U) =⇒ L(v, U) ⊆ L(u, U) ( transitivity ) ,
3. u ∈ V ∧ V ⊆ U =⇒ L(u, U) ⊆ L(u, V ) ( filter axiom ) .

Variables in ML(u, U) are L-multiplicative for u and those in NML(u, U) = X \
ML(u, U) are L-nonmultiplicative. If w ∈ uL(u, U), then u is L-(involutive) divisor
of w (denotation: u |L w).

In an involutive algorithm the nonmultiplicative variables of a polynomial are
used for its prolongation, that is, for the multiplication by these variables, whereas
the multiplicative variables of other polynomials in the set are used for reduction
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of the nonmultiplicative prolongations. An involutive basis is a polynomial set
such that all its nonmultiplicative prolongations are multiplicatively reducible to
zero. If an involutive algorithm terminates it outputs an involutive basis which is
a Gröbner basis of the special structure determined by properties of underlying
involutive division. In our approach, a reduced Gröbner basis is always a well
defined subset of the involutive basis and can be extracted from the last one
without any extra computation [3].

In the talk we consider pair divisions introduced in [5] which are pairwise
generated by total monomial orderings and studied in [6] - [9]. They are called ≺
−divisions, where ≺ is a total monomial ordering compatible with multiplication,
i.e. a � b → m · a � m · b for all m. In [9], from this class of divisions we singled
out the �alex-division generated the antigraded lexicographic ordering �alex and
shown, by computer experimentation, that in the vast majority of cases �alex-
division yields much more compact monomial involutive bases than Janet division
which is pairwise generated by the pure lexicographic ordering �lex.

Definition 2. [9]. Let U be a finite set of monomials in K[x1, . . . , xn], ≺ a total
monomial ordering compatible with multiplication and σ a permutation of vari-
ables x1, . . . , xn. Then a (pairwise) �-division is defined as

( ∀u ∈ U ) [ NML(u, U) =
⋃

v∈U\{u}

NML(u, {u, v}) ] , (1)

where

NML(u, {u, v}) :=

{
if u � v or (u ≺ v ∧ v | u) then ∅
else {xσ(i)}, i = min{j | degσ(j)(u) < degσ(j)(v)} .

(2)

Definition 3. For a monomial u ∈ U and a total monomial ordering �, the
element v ∈ G where G(U) is the reduced Gröbner basis of U is said to be an
ancestor of u in U w.r.t. � (denotation: v = anc�(u)) if

v := max
�
{w ∈ G(U) | w | u } .

Given a ≺ −division defined in (1)-(2) and a finite monomial set U , one can
further compactify its involutive basis if to define the total ordering �G of elements
in the monomial ideal I generated by U as follows

u �alexG
v if anc�(u) � anc�(v) or (anc�(u) = anc�(v) and u � w) (3)

and to use Eqs. (1)-(2) for the involutive completion of G.
Another possibility of the compactification of ≺ −divisions is to use the total

orderings

u �G v if deg(anc�(u)) � deg(anc�(v))

or (deg(anc�(u)) = deg(anc�(v)) and u � w) . (4)

For several pairwise divisions, we generated randomly monomial sets for dif-
ferent numbers of variables and averaged the cardinalities of their involutive bases
over the permutations σ of variables occurring in Eq. (2). Clearly, Gröbner bases
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for Eqs. (3)-(4) are much more compact and computed much faster then those for
≺ −divisions.
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Figure 1. Cardinality growth with the number of variables
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Figure 2. CPU time growth with the number of variables
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